

RUHR-UNIVERSITÄT BOCHUM

FACING THE EU ENERGY TRANSITION: PROGRESS AND CHALLENGES FOR 2030

Prof. Dr. Andreas Löschel

Chair of Environmental/Resource Economics and Sustainability, Ruhr University Bochum Chair of the German Federal Government's Expert Commission "Energy of the Future"

ECONPOL POLICY REPORT

March Vol. 8

49

2024

Watts Next: Securing Europe's Energy and Competitiveness Where the EU's Energy Policy Should Go Now Frédéric Gonand, Pedro Linares, Andreas Löschel, David Newbery, Karen Pittel, Julio Saavedra, Georg Zachmann

Introduction to Report and Lessons Learnt

Watts Next: Securing Europe's Energy and Competitiveness

The Way It Was and The Way It Is

National Measures to Ameliorate Impact of Energy Crisis

The Way It Was and The Way It Is

EU Diversification Away from Russian Gas

GERMANY - Geopolitical Resilience

Source: Eigene Darstellung nach Agora/Prognos (2022) und Aurora (2022)

GERMANY - Gas supply: Pipelines / LNG-Terminals

Source: Tagesspiegel Pipelineatlas

Quelle: TableBerlin / Malte Kreuzfeld, Jahreswirtschaftsbericht 2024

https://interaktiv.tagesspiegel.de/lab/globaler-pipeline-atlas-das-unsichtbare-netz-der-weltweiten-energieversorgungs/

GERMANY - Gas demand

Small consumers

а

Industrial consumers

b

600 consumers have massively reduced their Until Febuary 2022 From March 2022 500 demand, first industry, then households Price change (%) 400 (max 28% in 9/22, 23% 2.Hj 23) 300 market prices play major role 200 100 (price elasticities $\mathcal{E}_{HH} < 0.16$, 0 $\epsilon_{\text{Ind}} < 0.04 \rightarrow \text{pass on higher energy costs}$ -30 10 -30 -20 Crisis response (%) Crisis response (%) Small consumers Industrial consumers Power sector Estimated baseline Natural gas consumption (TWh) -12% 70 Estimated crisis response - Observed 60 Seasonally adjusted Seasonally and temperature adjusted 50 -249 40 30 20 10 0 28° 0° 20° 08° 18° 18° 18° 18° 18° 18° 18° 28° 28° 0° 20° 18° 50° 0° 20' 0° 18 68 18 60' 18' 11' 11' 11' 20 50° 0° 20' 00 2021 2022 2021 2022 2021 2022

Quelle: Ruhnau, O., Stiewe, C., Muessel, J. et al. Natural gas savings in Germany during the 2022 energy crisis. Nat Energy (2023). https://doi.org/10.1038/s41560-023-01260-5

Date

The Way It Was and The Way It Is

Change in EU Electricity Generation, 2021 vs. 2022

Source: Fraunhofer Institute for Solar Energy Systems (2023); own calculations

Lessons Learned from the Energy Crisis

Strengthen energy security

Reducing dependencies and improving flexibility within Europe, increasing energy efficiency

Avoid distortionary policy and use the power of markets

As little as possible dampening of market prices as short term palliative (balance between HH and firms)

Adjust existing and built new infrastructure

Decommission gas grids and repurpose them

Establish a strategic Foresight Office

Reducing risks of future pandemics, energy crisis, raw material shortages, or large-scale cyberattacks

Communicate honestly!

Policy Coordination

Watts Next: Securing Europe's Energy and Competitiveness

Policy Coordination

Creation of a single European long-term electricity market: lower costs, more security

– Regulators: promote long-term contracting at the European level

Standardized products, trading platforms

Contracts for Difference: Not mandatory, not distortionary, not unfair, not only public

Carbon Contracts for Difference

– Governments: refrain from interfering in markets (emergencies may be different)

Policy Coordination

While this is done: **temporary coordination arrangements**, e.g.:

Concerted RES auction

Concerted price for Reliability Options

Common design for promoting storage

Resilience

Watts Next: Securing Europe's Energy and Competitiveness

Resilience

What went well

Keeping the market open

- Limited border closures
- Little energy-price subsidies (joint demand-reduction pledge most important)
- Maintain ETS

What went okay

New coordin'/inform'ation fora emerged

• Ad-hoc coordination of energy ministers (good on demand reduction, bad on joint diversification)

• IEA

What went wrong

Lack of preparedness

- Modelling of major disruptions (RU gas, FR nuclear)
- N-1 for countries

MS tried to withhold sensitive elasticities

• Groningen, nuclear, demand reduction

Lack of data crucial for effective policies

- granular data on prices, contracts, flows, demand was missing (comp's used info strategically)
- Much of academia/modelling capacity was under-utilised

Resilience

What can we learn?

- Energy policy needs to prepare for major disruptions
- Diversification and excess capacities have cost
- Foresight allows to balance the cost of preparation and disruption
 - 1. Understand systemic risks
 - 2. Identify lowest-cost options to reduce the cost of such disruptions (remembering the elasticity of the system)
 - 3. Sufficient foresight to trigger adjustments in time
- -> need for transparent, reliable and relevant data and modelling to coordinate efficient policies in time

Illustration

Infrastructure: location signals and UK/GER energy market reforms

Watts Next: Securing Europe's Energy and Competitiveness

GERMANY Climate neutral electricity market design

Monitoring process "Energy of the Future" to review the progress of the energy transition and the implementation status of measure

appointment of an independent expert commission to review and comment on the monitoring reports prepared by the BMWK.

BMWK has asked expert commission for the platform "Climate Neutral Electricity System" (PKNS) to prepare an analysis on the current situation on the electricity market and on further development options for the electricity market design (published February 2023, summer paper, winter paper)

Expertenkommission zum Monitoring-Prozess "Energie der Zukunft"

Stellungnahme zum Strommarktdesign und dessen Weiterentwicklungsmöglichkeiten

Berlin · Bochum · Freiburg · Nürnberg, Februar 2023

- Prof. Dr. Andreas Löschel (Vorsitzender)
- Prof.in Dr. Veronika Grimm
- Dr. Felix Matthes
- · Prof.in Dr. Anke Weidlich

ENERGIE DER ZUKUNFT

Kommission zum Monitoring-Prozess

Prof. Dr. Andreas Löschel (Vorsitzender) Prof.in Dr. Veronika Grimm Dr. Felix Matthes Prof.in Dr. Anke Weidlich

https://www2.wiwi.rub.de/stellungnahmezum-strommarktdesign-und-dessen-weiterentwicklungsmoeglichkeiten/

GERMANY Market design: Reform options

* SyS Systemservices

** PPAs Power Purchase Agreements

GERMANY Infrastructure: Electricity 2037/2045 (2024)

Network development plan (approved 3/ 2024)

Übersicht der Szenariokennzahlen

	Installi	ierte Leistun	g in GW				
Energieträger	Referenz 2020/2021	A 2037	B 2037	C 2037	A 2045	B 2045	C 2045
Erdgas/Wasserstoff*	32,1	>38,4	>38,4	>38,4	>34,6	≥34,6	>34,6

Stromverbrauch in TWh

Nettostromverbrauch	478	828	891	982	999	1.025	1.222
Bruttostromverbrauch	533	899	newly 961	1.053	1.079	1.106	1.303

Treiber Sektorenkopplung

1,2	14,3	14,3	14,3	16,3	16,3	16,3
1,2	25,2	31,7	31,7	34,8	37,3	37,3
0,8	12,6	16,1	22,0	14,9	20,4	27,0
<0,1	40,0	26,0	28,0	80,0	50,0	55,0
	1,2 1,2 0,8 <0,1	1,2 14,3 1,2 25,2 0,8 12,6 <0,1	1,2 14,3 14,3 1,2 25,2 31,7 0,8 12,6 16,1 <0,1	1,2 14,3 14,3 14,3 1,2 25,2 31,7 31,7 0,8 12,6 16,1 22,0 <0,1	1,2 14,3 14,3 14,3 16,3 1,2 25,2 31,7 31,7 34,8 0,8 12,6 16,1 22,0 14,9 <0,1	1,2 14,3 14,3 14,3 16,3 16,3 1,2 25,2 31,7 31,7 34,8 37,3 0,8 12,6 16,1 22,0 14,9 20,4 <0,1

Weitere Speicher und nachfrageseitige Flexibilitäten in GW

PV-Batteriespeicher	1,3	67,4	67.4	67,4	97,7	97,7	113,4
Großbatteriespeicher	0,5	23,7	23,7	24,2	43,3	43,3	54,5

Trassenkilometer und Investitionen des Zubaunetzes in den Szenarien A/B/C 2045

	Trassenlänge in km	Investitionsvolumen in Mrd. EUR
Offshore	13.310	145,1
Onshore	12.413	106,2
Summe	25.723	251,3

Quelle: Übertragungsnetzbetreiber

Monitoring BBPIG, EnLAG Quelle: NEP (2023)

GERMANY Infrastructure: Hydrogen (2023)

Wasserstoff-Kernnetz (Juli 2023)

Metals and Raw Materials

Security of supply in metals

Rising demand for metals needed for the green transition: lithium, cobalt, graphite, rare earths... (-> batteries) + aluminum and copper (cables, PV panels).

Few grounds to believe that **metal prices** will fall significantly in the medium term. Investments low since mid-2010's.

Europe heavily dependent on imports for many of these metals.

Import concentration and key technologies

How to deal with rising concerns?

Diversify and reduce risks of supply disruptions

Encourage production of critical metals in Europe

Ramp up circular economy

Getting from outlining framework and measures to **implementation** of, e.g., Critical Raw Materials Act

Risks: **Carbon Border Adjustment Mechanism (CBAM)** may accelerate relocation of downstream (e.g. aluminum industry) to non-European countries.

Gracias. Gràcies. Thanks. Danke.

Prof. Dr. Andreas Löschel 吕安迪

Professor of Environmental/Resource Economics & Sustainability, Ruhr-Universität Bochum Twitter/Wechat: andreasloeschel Mail andreas@loeschel.eu Internet www.loeschel.eu